Doc. Ing. Jan Valdman, Dr.

research fellow

Jan Valdman
Research interests: nonlinear mechanics, a posteriori error analysis, optimization of elastic structures, semidefinite programming, equations with equilibrium constraints, efficient implementation of finite element methods, and vectorization in MATLAB.

Biography

Publication list

Academic Degrees

  • 2011 – Associate Professor degree (second doctorate) at VSB-TU Ostrava
  • 2002 – Dr.rer.nat. degree in Applied Mathematics at CAU Kiel, supervisors: Carsten Carstensen, Martin Brokate
  • 1997 – Master Class Certificate in Numerical Analysis and Supercomputing at Utrecht University, supervisor: Henk van der Vorst
  • 1997 – Dipl.-Ing. degree in Mathematical Modeling and Computational Mechanics at University of West Bohemia, Pilsen, supervisors: Pavel Drábek, Stanislav Míka

Current Positions

Previous Professional Experience

Short Scientific Visits

Software

All my codes are available at Matlab Central.

Books and chapters

  1. Valdman Jan, Marcinkowski L.: Modeling and Simulation in Engineering : Selected Problems, IntechOpen (London, 2020) Download DOI: 10.5772/intechopen.87734 [2020]
  2. Valdman Jan: OPTIMIZATION ALGORITHMS - EXAMPLES, IntechOpen (London, 2018) Download Download DOI: 10.5772/intechopen.71370 [2018]
  3. Valdman Jan: Applications from Engineering with MATLAB Concepts, InTech (Rijeka, 2016) Download Download DOI: 10.5772/61386 [2016]

Journal articles

  1. Mallesham H. N., Porwal K., Valdman Jan, Acharya S. K.: Vectorized implementation of primal hybrid FEM in MATLAB, Computers & Mathematics With Applications 180 1 (2025), p. 144-165 Download Download DOI: 10.1016/j.camwa.2024.12.017 [2025]
  2. Lehnert R., Valdman Jan, Zidkova H.: METHODOLOGY OF ROTATION OF GENERAL SURFACES, MM Science Journal 2024 1 (2024), p. 7829-7838 Download Download DOI: 10.17973/MMSJ.2024_12_2024037 [2024]
  3. Bevan J., Kružík Martin, Valdman Jan: Hadamard’s inequality in the mean, Nonlinear Analysis: Theory, Methods & Applications 243 Download Download DOI: 10.1016/j.na.2024.113523 [2024]
  4. Krömer Stefan, Valdman Jan: Surface penalization of self-interpenetration in linear and nonlinear elasticity, Applied Mathematical Modelling 122 1 (2023), p. 641-664 Download Download DOI: 10.1016/j.apm.2023.06.018 [2023]
  5. Gfrerer H., Mandlmayr M., Outrata Jiří, Valdman Jan: On the SCD semismooth* Newton method for generalized equations with application to a class of static contact problems with Coulomb friction, Computational Optimization and Applications 86 3 (2023), p. 1159-1191 Download Download DOI: 10.1007/s10589-022-00429-0 [2023]
  6. Dondl P., Jesenko M., Kružík Martin, Valdman Jan: Linearization and computation for large-strain visco-elasticity, Mathematics in Engineering 5 2 (2023), p. 1-15 Download Download DOI: 10.3934/mine.2023030 [2023]
  7. Gfrerer H., Outrata Jiří, Valdman Jan: On the Application of the SCD Semismooth* Newton Method to Variational Inequalities of the Second Kind, Set-Valued and Variational Analysis 30 4 (2022), p. 1453-1484 Download Download DOI: 10.1007/s11228-022-00651-2 [2022]
  8. Frost Miroslav, Valdman Jan: Vectorized MATLAB Implementation of the Incremental Minimization Principle for Rate-Independent Dissipative Solids Using FEM: A Constitutive Model of Shape Memory Alloys, Mathematics 10 Download DOI: 10.3390/math10234412 [2022]
  9. Drozdenko D., Knapek M., Kružík Martin, Máthis K., Švadlenka K., Valdman Jan: Elastoplastic Deformations of Layered Structures, Milan Journal of Mathematics 90 2 (2022), p. 691-706 Download Download DOI: 10.1007/s00032-022-00368-9 [2022]
  10. Moskovka A., Valdman Jan: Fast MATLAB evaluation of nonlinear energies using FEM in 2D and 3D: Nodal elements, Applied Mathematics and Computation 424 Download Download DOI: 10.1016/j.amc.2022.127048 [2022]
  11. Friedrich M., Kružík Martin, Valdman Jan: Numerical approximation of von Kármán viscoelastic plates, Discrete and Continuous Dynamical systems - Series S 14 1 (2021), p. 299-319 Download Download DOI: 10.3934/dcdss.2020322 [2021]
  12. Outrata Jiří, Valdman Jan: On computation of optimal strategies in oligopolistic markets respecting the cost of change, Mathematical Methods of Operations Research 92 3 (2020), p. 489-509 Download Download DOI: 10.1007/s00186-020-00721-x [2020]
  13. Pauly D., Valdman Jan: Poincaré-Friedrichs type constants for operators involving grad, curl, and div: Theory and numerical experiments, Computers & Mathematics With Applications 79 11 (2020), p. 3027-3067 Download Download DOI: 10.1016/j.camwa.2020.01.004 [2020]
  14. Frost Miroslav, Kružík Martin, Valdman Jan: Interfacial polyconvex energy-enhanced evolutionary model for shape memory alloys, Mathematics and Mechanics of Solids 24 8 (2019), p. 2619-2635 Download DOI: 10.1177/1081286519841103 [2019]
  15. Li J. R., Nguyen V. D., Tran T. N., Valdman Jan, Trang C. B., Nguyen K. V., Vu D. T. S., Tran H. A., Tran H. T. A., Nguyen T. M. P.: SpinDoctor: A MATLAB toolbox for diffusion MRI simulation, Neuroimage 202 Download Download DOI: 10.1016/j.neuroimage.2019.116120 [2019]
  16. Krömer Stefan, Valdman Jan: Global injectivity in second-gradient Nonlinear Elasticity and its approximation with penalty terms, Mathematics and Mechanics of Solids 24 11 (2019), p. 3644-3673 Download Download DOI: 10.1177/1081286519851554 [2019]
  17. Čermák Martin, Sysala Stanislav, Valdman Jan: Efficient and flexible MATLAB implementation of 2D and 3D elastoplastic problems, Applied Mathematics and Computation 355, p. 595-614 Download DOI: 10.1016/j.amc.2019.02.054 [2019]
  18. Repin S., Valdman Jan: Error identities for variational problems with obstacles, ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik 98 4 (2018), p. 635-658 Download DOI: 10.1002/zamm.201700105 [2018]
  19. Kružík Martin, Valdman Jan: Computational modeling of magnetic hysteresis with thermal effects, Mathematics and Computers in Simulation 145 1 (2018), p. 90-105 Download DOI: 10.1016/j.matcom.2017.03.004 [2018]
  20. Roubíček Tomáš, Valdman Jan: Stress-driven solution to rate-independent elasto-plasticity with damage at small strains and its computer implementation, Mathematics and Mechanics of Solids 22 6 (2017), p. 1267-1287 Download DOI: 10.1177/1081286515627674 [2017]
  21. Bozorgnia F., Valdman Jan: A FEM approximation of a two-phase obstacle problem and its a posteriori error estimate, Computers & Mathematics With Applications 73 3 (2017), p. 419-432 Download DOI: 10.1016/j.camwa.2016.11.037 [2017]
  22. Roubíček Tomáš, Valdman Jan: Stress-driven solution to rate-independent elasto-plasticity with damage at small strains and its computer implementation, Mathematics and Mechanics of Solids 22 6 (2017), p. 1267-1287 Download DOI: 10.1177/1081286515627674 [2017]
  23. Roubíček Tomáš, Valdman Jan: Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computer implementation, Siam Journal on Applied Mathematics 76 1 (2016), p. 314-340 Download DOI: 10.1137/15M1019647 [2016]
  24. Marcinkowski L., Rahman T., Loneland A., Valdman Jan: Additive Schwarz preconditioner for the finite volume element discretization of symmetric elliptic problems, Bit 56 3 (2016), p. 967-993 Download DOI: 10.1007/s10543-015-0581-x [2016]
  25. Repin S., Valdman Jan: A posteriori error estimates for two-phase obstacle problem, Journal of Mathematical Sciences 107 2 (2015), p. 324-335 Download DOI: 10.1007/s10958-015-2374-9 [2015]
  26. Anjam I., Valdman Jan: Fast MATLAB assembly of FEM matrices in 2D and 3D: Edge elements, Applied Mathematics and Computation 267 1 (2015), p. 252-263 Download DOI: 10.1016/j.amc.2015.03.105 [2015]
  27. Harasim P., Valdman Jan: Verification of functional a posteriori error estimates for obstacle problem in 2D, Kybernetika 50 6 (2014), p. 978-1002 Download DOI: 10.14736/kyb-2014-6-0978 [2014]
  28. Čermák M., Kozubek T., Sysala Stanislav, Valdman Jan: A TFETI domain decomposition solver for elastoplastic problems, Applied Mathematics and Computation 231 1 (2014), p. 634-653 Download DOI: 10.1016/j.amc.2013.12.186 [2014]
  29. Harasim P., Valdman Jan: Verification of functional a posteriori error estimates for obstacle problem in 1D, Kybernetika 49 5 (2013), p. 738-754 Download [2013]

Other publications

  1. Frost Miroslav, Sedlák Petr, Seiner Hanuš, Valdman Jan, Moskovka Alexej, Šittner Petr: Constitutive Model for NiTi Polycrystalline Alloys Undergoing Transformation and Plastic Deformation Processes, SMST 2024: Extended Abstracts from the International Conference on Shape Memory and Superelastic Technologies, p. 82-83 Download DOI: 10.31399/asm.cp.smst2024p0082 [2024]
  2. Frost Miroslav, Moskovka A., Valdman Jan: Minimization of energy functionals via FEM: Implementation of hp-FEM, Large-Scale Scientific Computations, p. 307-315, Eds: Lirkov I. , Margenov S. Download DOI: 10.1007/978-3-031-56208-2_31 [2024]
  3. Moskovka A., Valdman Jan, Vohnoutová M.: On Minimization of Nonlinear Energies Using FEM in MATLAB, Parallel Processing and Applied Mathematics : 14th International Conference, PPAM 2022, p. 331-342, Eds: Wyrzykowski R., Dongarra J., Deelman E., Karczewski K. Download DOI: 10.1007/978-3-031-30445-3_28 [2023]
  4. Moskovka A., Valdman Jan: MATLAB Implementation of Hp Finite Elements on Rectangles Using Hierarchical Basis Functions, Parallel Processing and Applied Mathematics : 14th International Conference, PPAM 2022, p. 287-299, Eds: Wyrzykowski R., Dongarra J., Deelman E., Karczewski K. Download DOI: 10.1007/978-3-031-30445-3_24 [2023]
  5. Moskovka Alexej, Frost Miroslav, Valdman Jan: Numerical minimization of energy functionals in continuum mechanics using hp-FEM in MATLAB, Computational mechanics 2023. Proceedings of computational mechanics 2023, p. 130-132, Eds: Adámek V., Jonášová A., Plánička S. Download [2023]
  6. Frost Miroslav, Moskovka Alexej, Sedlák Petr, Valdman Jan: Numerical implementation of incremental minimization principle for materials with multiple rate-independent dissipative mechanisms, Computational mechanics 2023. Proceedings of computational mechanics 2023, p. 52-54, Eds: Adámek V., Jonášová A., Plánička S. Download [2023]
  7. Gfrerer H., Outrata Jiří, Valdman Jan: On the Solution of Contact Problems with Tresca Friction by the Semismooth* Newton Method, Large-Scale Scientific Computing, p. 515-523, Eds: Lirkov I., Margenov S. Download DOI: 10.1007/978-3-030-97549-4_59 [2022]
  8. Matonoha Ctirad, Moskovka A., Valdman Jan: Minimization of p-Laplacian via the Finite Element Method in MATLAB, Large-Scale Scientific Computing, p. 533-540, Eds: Lirkov I., Margenov S. Download DOI: 10.1007/978-3-030-97549-4_61 [2022]
  9. Matonoha Ctirad, Moskovka A., Valdman Jan: Minimization of Energy Functionals via the Finite Element Method in MATLAB, Large-Scale Scientific Computations LSSC’21. Scientific Program, Abstracts, List of Participants, p. 61-62 Download [2021]
  10. Valdman Jan: MATLAB Implementation of C1 Finite Elements: Bogner-Fox-Schmit Rectangle, Parallel Processing and Applied Mathematics : 13th International Conference, PPAM 2019, p. 256-266, Eds: Wyrzykowski R., Deelman E., Dongarra J., Karczewski K. Download DOI: 10.1007/978-3-030-43222-5_22 [2020]
  11. Čermák Martin, Sysala Stanislav, Valdman Jan: On vectorized MATLAB implementation of elastoplastic problems, AIP Conference Proceedings, Volume 2293, Issue 1 : INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019 Download DOI: 10.1063/5.0026561 [2020]
  12. Marcinkowski L., Valdman Jan: MATLAB Implementation of Element-Based Solvers, Large-Scale Scientific Computing : 12th International Conference, LSSC 2019, p. 601-609, Eds: Lirkov I., Margenov S. Download Download DOI: 10.1007/978-3-030-41032-2_69 [2020]
  13. Repin S., Valdman Jan: Verifications of Primal Energy Identities for Variational Problems with Obstacles, Large-Scale Scientific Computing : 11th International Conference, LSSC 2017, p. 175-182, Eds: Lirkov I., Margenov S. Download DOI: 10.1007/978-3-319-73441-5_18 [2018]
  14. Kunovský J., Šátek V., Valdman Jan, Valenta V.: Construction of P-1 Gradient from P-0 Gradient by Averaging, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014) Download DOI: 10.1063/1.4913135 [2015]